Project update

September 27, 2010
ALTERNATIVES ANALYSIS
August 2008 - November 2009
- Understand Problems
- Define & Evaluate Alternatives
- Select Alternatives for Environmental Assessment

ENVIRONMENTAL ASSESSMENT
January 2010 - June 2011
- Environmental Analysis
- Select Preferred Alternative
- Prepare Mitigation Plans
- Refine Alternatives

PERMITTING AND DESIGN
June 2011 - December 2015
- Survey
- Design Footprint
- Complete Design
- Right of Way Acquisition & Relocation
- Relocate Utilities
- Environmental Permits
- Begin Construction
Update to show new schedule
Kristin Hull, 9/21/2010
Updates: Extend Pacific Avenue North (Alt 2)

- **Floodplain impacts**
 - Initial design caused a net rise
 - Revised design to include structured approaches both north and south of the Slough

- **Transportation results**
 - Extended planning horizon from 2030 to 2036
 - Need to consider some refinements to this alternative to improve transportation performance in long-term
Replace US 101 Bridge Design Refinement
Replace US 101 Bridge (Alt 1) Refinement

Choices

• Build bridge 2 feet above 100 year flood elevation
• Build bridge within the 100 year flood elevation

Policy context

• Project Exodus, when implemented, will reduce 100 year flood elevation, but will not change the height of US 101 (the highway will still flood at times)

• Key requirement related to bridge height is to meet City’s “no net rise” code
Option 1: 2’ above 100 year flood elevation

1st Street

Front/Park access (7 feet above existing)

New bridge (7 feet above existing)

Rosenberg’s southern driveway

Proposed US 101
Existing US 101
Update with new profiles
Kristin Hull, 9/21/2010
Option 2: Within 100 year flood elevation

1st Street

Front/Park access (3 feet above existing)

New bridge (7 feet above existing)

Rosenberg’s southern driveway

Proposed US 101

Existing US 101
Update with new profiles
Kristin Hull, 9/21/2010

Update
Kristin Hull, 9/21/2010
<table>
<thead>
<tr>
<th></th>
<th>2’ above 100 year</th>
<th>Within 100 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge deck height</td>
<td>10-12’ higher than existing</td>
<td>5-7’ higher than existing</td>
</tr>
<tr>
<td>Change in 100 year flood elevation</td>
<td>Reduces by 0.1 foot</td>
<td>No change (no net rise)</td>
</tr>
<tr>
<td>Cost (w/out ROW)</td>
<td>$7.95M</td>
<td>$7.45M</td>
</tr>
<tr>
<td>Business impacts</td>
<td>Relocates Burden’s</td>
<td>No relocations</td>
</tr>
<tr>
<td></td>
<td>Eliminates 4 driveways</td>
<td>Eliminates 1 driveway</td>
</tr>
<tr>
<td>Front Street/101</td>
<td>Reconstructs intersection</td>
<td>Reconstructs intersection</td>
</tr>
<tr>
<td>Trail parking</td>
<td>Reconstructs trail parking lot</td>
<td>Reconstructs trail parking lot</td>
</tr>
<tr>
<td>Natural environment</td>
<td>Same impacts/benefits</td>
<td>Same impacts/benefits</td>
</tr>
<tr>
<td>Parks</td>
<td>High retaining walls</td>
<td>Lower retaining walls</td>
</tr>
<tr>
<td>Access during 100 year flood events</td>
<td>Bridge won’t likely flood</td>
<td>Bridge will flood when US 101 floods</td>
</tr>
<tr>
<td>Construction materials</td>
<td>Standard materials</td>
<td>Potentially requires corrosion-resistant materials</td>
</tr>
<tr>
<td>Design guidelines</td>
<td>Meets design guidelines</td>
<td>Requires deviation</td>
</tr>
</tbody>
</table>
Replace US 101 Bridge (Alt 1) Refinement

• Question for discussion:
 – What are the benefits and drawbacks of constructing the bridge 2’ above the 100 year flood elevation?
 – What are the benefits and drawbacks of constructing the bridge within the 100 year flood elevation?
Decision-making process for design refinement

ODOT

Project team

SAC

Public input